-			~		
())	ner	atin		vste	mc
	PCI	atin	5 5	ysic	

L	Ρ	С
4		4

Discipline(s) / EAE / OAE	Semester	Group Sub-group		Paper Code	
CSE/IT/CST/ITE	5	PC	PC	CIC-305	
OAE	7	CSE-OAE	CSE-OAE-4	OCSE-409	

Markin	ng Schem	e:										
1. Te	Teachers Continuous Evaluation: 25 marks											
2. Te	Term end Theory Examinations: 75 marks											
Instruc	tions for	paper s	etter:									
1. The	here should be 9 questions in the term end examinations question paper.											
2. The	e first (1st) question should be compulsory and cover the entire syllabus. This question should be											
obj	pjective, single line answers or short answer type question of total 15 marks.											
3. Apa	part from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus.											
Eve	very unit shall have two questions covering the corresponding unit of the syllabus. However, the student											
sha	all be ask	ed to att	empt onl	y one of	the two	questior	is in the	unit. Indi	ividual qu	uestions	may con	tain upto 5
sub	p-parts / s	sub-ques	tions. Ea	ch Unit s	shall have	e a mark	s weighta	age of 15).	,		
4. The	e questio	ns are to	be fram	ed keep	ing in vie	ew the le	arning o	utcomes	of the co	ourse / p	aper. Th	e standard
/le	evel of the	e questic	ons to be	asked sh	nould be	at the le	vel of the	e prescril	oed text	DOOK.	ار میں اسم	
5. The	e require	ment of	scientific	c) calcula	itors / 10	g-tables	/ data – i	tables m	ay be spe	ecified if	required	
		derstand	the has	tics of C	t bac 21	hoir fun	ctions 7	To learn	the sch	oduling	nolicies	of various
1.	operating systems											
2	Learn memory management methods											
3.	To understand the characterisation of deadlock system deadlock preventing deadlock avoiding											
0.	deadlock and related concepts.											
4.	To understand the meaning of a file, structure of the directories, file structure system and											
	implementation, free-space management											
Course	urse Outcomes (CO)											
CO 1	D1 Understand the role of operating system in a computing device,											
	and Ability to understand paging and segmentation methods of memory binding and their pros &											
	cons.											
CO 2	Understand scheduling of process over a processor. Ability to use concepts of semaphore and its											
	usage in process synchronization.											
CO 3	Ability to synchronize programs and make the system deadlock free.											
CO 4	Ability to understand file system like file access methods, directory structures, file space allocation in											
	disk and free space management in disk. Ability to understand disk scheduling and disk recovery											
	procedures.											
Course	Outcom	es (CO) t	to Progra	mme Ou	utcomes	(PO) ma	pping (so	cale 1: lo	w, 2: Me	dium, 3:	High)	
	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO 1	3	3	2	-	3	-	-	-	-	-	-	-
CO 2	3	3	-	-	2	-	-	-	-	-	-	-
03	3	2	3	-	2	-	-	-	-	-	-	-
CO 4	3	3	-	-	2	-	-	-	-	-	-	-

UNIT-I

Introduction: What is an Operating System, Simple Batch Systems, Multiprogrammed Batches systems, Time Sharing Systems, Personal-computer systems, Parallel systems, Distributed Systems, Real-Time Systems, OS – A Resource Manager.

Processes: Introduction, Process states, process management, Interrupts, Interprocess Communication Threads: Introduction, Thread states, Thread Operation, Threading Models. Processor Scheduling: Scheduling levels, preemptive vs no preemptive scheduling, priorities, scheduling objective, scheduling criteria, scheduling algorithms, demand scheduling, real time scheduling.

[No. of hrs. 12]

UNIT-II

Process Synchronization: Mutual exclusion, software solution to Mutual exclusion problem, hardware solution to Mutual exclusion problem, semaphores, Critical section problems. Case study on Dining philosopher problem, Barber shop problem etc.

Memory Organization & Management: Memory Organization, Memory Hierarchy, Memory Management Strategies, Contiguous versus non- Contiguous memory allocation, Partition Management Techniques, Logical versus Physical Address space, swapping, Paging, Segmentation, Segmentation with Paging Virtual Memory: Demand Paging, Page Replacement, Page-replacement Algorithms, Performance of Demand Paging, Thrashing, Demand Segmentation, and Overlay Concepts.

[No. of hrs. 13]

UNIT-III

Deadlocks: examples of deadlock, resource concepts, necessary conditions for deadlock, deadlock solution, deadlock prevention, deadlock avoidance with Bankers algorithms, deadlock detection, deadlock recovery. Device Management: Disk Scheduling Strategies, Rotational Optimization, System Consideration, Caching and Buffering.

[No. of hrs. 13]

UNIT - IV

File System: Introduction, File Organization, Logical File System, Physical File System, File Allocation strategy, Free Space Management, File Access Control, Data Access Techniques, Data Integrity Protection, Case study on file system viz FAT32, NTFS, Ext2/Ext3 etc.

[No. of hrs. 12]

Textbook(s):

[T1] Deitel & Dietel, "Operating System", Pearson, 3 rd Ed., 2011

[T2] Silbersachatz and Galvin, "Operating System Concepts", Pearson, 5th Ed., 2001

[T3] Madnick & Donovan, "Operating System", TMH,1st Ed., 2001

References:

[R1] Tannenbaum, "Operating Systems", PHI, 4th Edition, 2000

[R2] Godbole, "Operating Systems", Tata McGraw Hill, 3rd edition, 2014

[R3] Chauhan, "Principles of Operating Systems", Oxford Uni. Press, 2014

[R4] Dhamdhere, "Operating Systems", Tata McGraw Hill, 3rd edition, 2012

[R5] Loomis, "Data Management & File Structure", PHI, 2nd Ed.

Operating Systems La	b
----------------------	---

L	Ρ	С
	2	1

Discipline(s) / EAE / OAE	Semester	Group	Sub-group	Paper Code	
CSE/IT/CST/ITE	5	PC	PC	CIC-353	

Marking Scheme:

1. Teachers Continuous Evaluation: 40 marks

2. Term end Theory Examinations: 60 marks

Instructions:

- 1. The course objectives and course outcomes are identical to that of (Operating Systems) as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 10 experiments must be performed by the students, they may be asked to do more. Atleast 5 experiments must be from the given list.

1. Write a program to implement CPU scheduling for first come first serve.

2. Write a program to implement CPU scheduling for shortest job first.

- 3. Write a program to perform priority scheduling.
- 4. Write a program to implement CPU scheduling for Round Robin.
- 5. Write a program for page replacement policy using a) LRU b) FIFO c) Optimal.

6. Write a program to implement first fit, best fit and worst fit algorithm for memory management.

7. Write a program to implement reader/writer problem using semaphore.

8. Write a program to implement Producer-Consumer problem using semaphores.

9. Write a program to implement Banker's algorithm for deadlock avoidance.

10. Write C programs to Implement the various File Organization Techniques